Cobordism, Relative Indices and Stein Fillings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cobordism, Relative Indices and Stein Fillings

In this paper we build on the framework developed in [7, 8, 9] to obtain a more complete understanding of the gluing properties for indices of boundary value problems for the SpinC-Dirac operator with sub-elliptic boundary conditions. We extend our analytic results for sub-elliptic boundary value problems for the SpinC-Dirac operator, and gluing results for the indices of these boundary problem...

متن کامل

Stein Fillings and Su(2) Representations

We recently defined invariants of contact 3-manifolds using a version of instanton Floer homology for sutured manifolds. In this paper, we prove that if several contact structures on a 3-manifold are induced by Stein structures on a single 4-manifold with distinct Chern classes modulo torsion then their contact invariants in sutured instanton homology are linearly independent. As a corollary, w...

متن کامل

Singularity Links with Exotic Stein Fillings

In [4], it was shown that there exist infinitely many contact Seifert fibered 3-manifolds each of which admits infinitely many exotic (homeomorphic but pairwise non-diffeomorphic) simply-connected Stein fillings. Here we extend this result to a larger set of contact Seifert fibered 3-manifolds with many singular fibers and observe that these 3-manifolds are singularity links. In addition, we pr...

متن کامل

Exotic Stein Fillings with Arbitrary Fundamental Group

For any finitely presentable group G, we show the existence of an isolated complex surface singularity link which admits infinitely many exotic Stein fillings such that the fundamental group of each filling is isomorphic to G. We also provide an infinite family of closed exotic smooth four-manifolds with the fundamental groupG such that each member of the family admits a non-holomorphic Lefsche...

متن کامل

Strongly fillable contact 3–manifolds without Stein fillings

We use the Ozsváth–Szabó contact invariant to produce examples of strongly symplectically fillable contact 3–manifolds which are not Stein fillable. AMS Classification numbers Primary: 57R17 Secondary: 57R57

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2008

ISSN: 1050-6926,1559-002X

DOI: 10.1007/s12220-008-9010-6